Блог фотографа Андрея Пашкевича

Фотографии природы, пейзажи, фотографии из походов и путешествий, фото города, панорамы.

Поделюсь конструкцией своего внешнего блока питания, на примере Canon 500D
Очень полезная вещь для длительных походов и сильных морозов (аккумуляторы во время работы можно держать в тепле в кармане).
При полной зарядке позволяет сделать 7-8 тыс кадров в автономном путешествии.
Вот он :))

Аналогичное устройство я делал и для 400D. Но у него другой формат аккумулятора.

И так.
Вместо дорогого lp-e5 на 1000 мАч, который мерзнет в корпусе фотоаппарата. У меня используется два дешевых акума для видеокамер на 3000-5000 мАч

В этой конструкции у меня 2 аккумулятора подсоединены через тумблер к разъёму, сделанному из корпуса не рабочего lp-e5. Что является элементом ненадёжности. Лучше делать для каждого внешнего акума, свой шнур подключения к фотоаппарату. Так надёжнее.
Так же использованный провод должен быть достаточно мягким на морозе, и не слишком тонким.
Ток, потребляемый фотоаппаратом до 3А.

И так. Конструкция.

1. Берём убитый lp-e5 или любой другой родной, или не родной :).
Разбираем его, пользуемся плоской отвёрткой и грубой физ. силой 🙂
Внутри мы видим сборку из литиевых элементов

Они нам не пригодятся. Нужен только копрус, и сам разъём, который используется для соединения с фотоаппаратом.
Разъём впаян в плату управления аккумулятора. Аккуратно разбираем, разъём достаточно хлипкий.
Лучше его не выпаивать, а отрезать с частью платы кусачками, к ней же аккуратно припиваем проводки от нашего шнура внешнего блока.

Там есть 3 контакта. + — и T
Нам нужен только + и -, третий используется для контроля разрядки аккумулятора, он не обязателен.

Фиксируем провода в корпусе клеем, так же фиксируем разъём, так что бы исключить нагрузку от шнура питания на разъём.
Собираем корпус. Склеиваем клеем, или тонким скотчем. При использовании скотча нужно быть аккуратным, потому что даже с одним слоем неровно намотанного скотча, акум не влезет в фотоаппарат.

В результате у нас получается нечто такое

Этот разъём вставляется в фотоаппарат. Шнур из аккмуляторного блока выводится через специальное отверстие, предназначенное для шнура внешнего сетевого блока питания.

2. берём большой акум от видеокамеры, или ещё от чего.
Разбираем его используя туже отвёртку и грубую физ. силу 🙂
Внутри мы наблюдаем так же сборку из 4-6 цилиндрических литиевых элементов питания. И плату управления.
Плата нам не нужна.

В моём варианте для зарядки больших акумов используется универсальный самодельный блок питания, собранный на микросхеме lm 2576T http://www.chipdip.ru/product/lm2576t-adj-nopb.aspx
У тех кто решится подобное собрать наверняка есть какой то универсальный блок питания, он и сойдёт 🙂
Я их заряжаю током от 3 А в начале, до 0,5 в конце. Заряд контролирую по напряжению. Аккумуляторы с номиналом 7,2-7,4 В при полном заряде выдают около 8,4 В.

Да, номинальное напряжение фирменного родного акума 7,4 вольта. При этом, когда он полностью заряжен он выдаёт около 8,4-8,5 в, и когда почти на нуле около 6,5 (без нагрузки)
Поэтому нам подходят большие аккумуляторы с номинальным напряжением и 7,2 и 7,4 разница не большая 🙂

Наверно большие аккумуляторы можно заряжать универсальными зарядками, для них предназначенными. Для этого нужно сохранить плату управления и третий разъём у большого аккумулятора.

Я же выкидываю плату, и оставляю только 2 провода. Так гораздо надёжнее. Платы управления у меня выходили из строя. Так же они сгорают при перегрузке и случайных коротких замыканиях. Кстати короткие замыкания в случае литиевых акумов опасны .
Они могут выдать огромный ток. У меня плавились достаточно толстые провода 🙂 И в случае длительного замыкания они могут взорваться от перегрева.

И так. Выкидываем из корпуса большого акума всё лишнее. Изолируем центральный провод. К + и — припаиваем наш шнур питания.
Очень внимательно . нужно не перепутать полярность.
Так же припаиваем второй провод для зарядки.
Всё это аккуратно запихиваем обратно в корпус, заматываем изолентой, И всё, внешний акум готов.
В конструкции показанной на первой фотке, подключены 2 акума через переключатель, для увеличения общей ёмкости при использовании одного корпуса от родного акума (больше не было у меня)
Когда садится один большой акум, переключаюсь на второй.

3. В этой конструкции ОЧЕНЬ ВАЖНО не перепутать полярность .
Я не пробовал перепутывать 🙂
Но думаю что фотоаппарат сгорит, если полярность перепутать.
Поэтому перед подключением этого чуда нужно рядом положить родной заряженный акум и проверить тестером соответствие полярности .

Весит это чудо грамм 400.

В качестве альтернативы всегда можно использовать солнечные элементы и термоэлектрические элементы.

Но по опыту это невыгодно. Ни по финансам ни по весу. А вес в автономном путешествии очень важен 🙂

Не всегда одного штатного аккумулятора цифровой камеры достаточно для нормальной работы. К примеру, при цейтраферной или других видах длительной интервальной съемки заряда аккумулятора может не хватить на весь процесс. Для увеличения продолжительности непрерывной работы камеры используются специальные батарейные ручки под 2 штатных аккумулятора или внешние источники питания. К сожалению, многие камеры не имеют «простых» интерфейсов для подключения внешних источников, а батарейные ручки выпускаются не для всех камер. Но задача обеспечения питания камеры все же решается, и не такими уж сложными средствами. Эта статья о том, как подключить универсальный источник питания с помощью самодельного адаптера-муляжа аккумулятора.

Адаптер-муляж

В одной из прошлых статей («Из практики подготовки к цейтраферной съемке, или Как проявляются законы “падающих бутербродов”») я писал, как сделать простейший батарейный блок под аккумуляторы типоразмера АА для питания камеры Canon PowerShot G9. Эта камера, как и многие другие, не рассчитанные на профессионалов, не имеет специального разъема для подключения внешнего блока питания. Вместо этого такой блок подключается через муляж штатной батарейки, для чего в корпусе камеры есть специальная ниша под провод. Однако приобрести такой адаптер-гильзу практически невозможно. Мне повезло купить недорого аналог штатного аккумулятора и сделать адаптер из него. Но это все же везение.

Хорошо, если корпус аккумулятора конструктивно прост и его муляж можно вылепить (хотя бы из глины) или вырезать (хотя бы из куска дерева) обычными инструментами. Но производители камер стараются сделать так, чтобы сторонние компании или умельцы не могли наладить массовый выпуск универсальных батарей и отобрать у них часть прибыли (отчасти, они, конечно, защищают нас и от потенциально опасной «левой» продукции, но это лишь совсем отчасти). Формы корпусов и разъемов меняются так же регулярно, как модели камер. Поэтому даже при «обновлении» камеры одного и того же производителя, фотограф часто не может использовать старые аккумуляторы.

Как видно по приведенной выше фотографии, современные аккумуляторы имеют довольно непростой разъем, который парой плоских клемм не заменишь. Приобрести «муляж» такого аккумулятора для реализации идеи питания камеры от внешнего блока питания невозможно (почти), а покупать аккумулятор, чтобы использовать только его корпус слишком накладно (ну разве что повезет найти «некондицию»). Опишу собственный опыт изготовления такого муляжа, а также использования внешнего блока питания «Вампирчик» (Мобильный источник питания «Вампирчик-Цифра»).

Найти заготовки для клемм муляжа аккумулятора можно в компьютерных и прочих разъемах. Клеммы для муляжа нужно предварительно испытать на контактах. В качестве испытательного стенда будем использовать зарядное устройство «моделируемого» аккумулятора. Клеммы должны хорошо держаться на контактах, а глубина щели должна быть достаточной для надежного захвата соответствующего контакта.

После того, как клеммы прикреплены к проводам питания (механическое обжатие и термоусадочная трубка), переходим к изготовлению корпуса аккумулятора. Самым простым способом мне показался процесс с формовкой или отливкой болванки-муляжа из затвердевающей массы. Было изготовлено несколько болванок из разных материалов: клея на эпоксидной основе с наполнителем, термоклея (для электрических монтажных пистолетов), массы для рукоделия на основе глины.

Первый этап — создание формы. Если муляж будет изготовлен из массы на основе эпоксидной смолы, то форму можно сделать из пластилина. Намазываем штатный аккумулятор маслом (я использовал обычное растительное) и формуем «вокруг» него пластилиновую форму. Кладем все вместе в морозильник. Ждем (≈30 минут), пока пластилин хорошо затвердеет. Затем извлекаем аккумулятор, не нарушая форму. Если перед формовкой прикрепить к аккумулятору петлю из тонкого канцелярского скотча, то извлечь его из формы будет проще.

На втором этапе в хорошо охлажденную форму нужно вмонтировать пластиковые перегородки под щели аккумулятора. А затем надеть на них соответствующие клеммы. Пластиковые перегородки должны быть установлены очень точно, иначе щели муляжа окажутся не в том месте и он просто не встанет на место в камере (или еще хуже — повредит контакты в камере!).

Третий этап — заливка формы. На аккумулятор LP-E8 нужно примерно 30-40 мл эпоксидной смеси. В детстве, когда для всяких самоделок приходилось покупать советскую эпоксидку большими банками, я расстраивался по поводу того, что нельзя купить меньшие. Теперь же в магазине, как правило, упаковки по ≈10 мл и я сожалею, что нет больших (и нет в мире совершенства). Расход смеси можно уменьшить, если добавить в смолу наполнитель, к примеру, нарезанную канцелярскую резинку. Эпоксидный клей лучше выбирать такой, который после отвердевания не будет очень жестким (то есть, если в описании обещают прозрачность и твердость стекла, то это не лучше, а хуже). Тогда муляж не будет колоться в области клемм, да и щелевые клеммы будут хоть как-то «подпружинены» упругой массой.

Клей быстро отвердевает и уже через час-два можно извлекать заготовку муляжа аккумулятора из формы. Чем точнее была сделана форма, тем меньше потребуется дополнительной обработки напильником и наждачной шкуркой.

При описанной технологии изготовления муляжа аккумулятора мне не удалось сделать достаточно хороший экземпляр. Как бы я ни морозил пластилин, жесткие провода все равно слегка выворачивают клеммные перегородки, и клеммы после затвердевания эпоксидки стоят не так, как нужно. Разумеется, проверять это нужно не на камере, а на зарядном устройстве. Клемму можно слегка подогнуть, но от этого ее механические свойства не улучшатся, да и муляж в области клемм разрушается. Чтобы от этой неприятности избавиться, я разбил процесс изготовления муляжа на две стадии: изготовление части с клеммами и изготовление самого муляжа. В качестве стапеля для изготовления клеммной части использовал зарядное устройство.

Область зарядного устройства, в котором будет формоваться клеммная часть, стоит защитить, к примеру, канцелярским скотчем, и хорошо промазать смазкой. Затем установить в нужное положение клеммы и сделать опалубку из тонкого пластика, в которую и будет заливаться эпоксидка.

Заливать эпоксидку в зарядное устройство — варварское занятие. Но если все сделать аккуратно, хорошо промазать все смазкой (масло, силиконовая смазка или силиконовый полироль), которая не даст эпоксидке приклеится к пластику и контактам, то вреда ЗУ не будет (предварительно нужно поэкспериментировать со смазками и используемой эпоксидкой). Заливаем через желобок в опалубку эпоксидку. Ждем пока она хорошо схватится и извлекаем заготовку. В одном случае при изготовлении клеммной части я использовал плохую смазку (машинное масло), и моя конструкция приклеилась к ЗУ. Так как это был первый эксперимент, я подстраховался и не стал ждать полного высыхания, а извлек «деталь» еще сырой. Остатки эпоксидки пришлось удалять шилом и отверткой, но ЗУ я не повредил. В общем, нужно предпринять все возможные меры предосторожности и предварительно проверить комбинации «эпоксидка — смазка — медь — пластик» на предмет «несклеивания»!

На второй стадии изготовления муляжа нужно снова сделать форму (из пластилина или другим способом), установить в нее клеммную часть и залить эпоксидную массу с наполнителем.

Как уже упоминалось, в качестве материала для создания муляжа можно использовать не только эпоксидную смолу с отвердителем и наполнителем. Подойдет любая затвердевающая масса или клей с небольшой усадкой при высыхании. Я пробовал форомовочную массу на основе глины и термоклей. Преимущества этих материалов в том, что они меньше пачкают и не пахнут, не требуют специальной вентиляции при работе. Но есть у них и недостатки. Глина крошится в месте контактов и выхода провода, а горячий термоклей нельзя заливать в пластилиновую форму — он ее расплавит. Если же делать для термоклея форму из глины, она по причине большой вязкости глины получается не точной, и приходится муляж долго доводить до нужных размеров и форм (хотя горячим ножом это делать довольно просто). Кроме того, по поводу термоклея у меня нет уверенности, что он не размягчится в камере. Варианты использования глины и термоклея приведены скорее для того, чтобы показать их меньшую полезность в сравнении эпоксидной массой, и на тот случай, если эпоксидки в ближайшем магазине не окажется, а глина, клей и жажда действий есть.

Вампирчик-Цифра

Про «Вампирчик» (накопитель / преобразователь / источник питания / индикатор) я узнал не так давно из статьи «Техника в руках дикаря: 10 лет спустя». На фоне, мягко говоря, сволочизма с фирменными аккумуляторами, в существование такого универсального, полезного и сравнительно недорогого устройства просто не верилось. Тем не менее, мир оказался не так уж и плох, и в нем не перевелись еще специалисты и энтузиасты реальных дел. Устройство во всех отношениях восхищает. Оно и накопитель (2 встроенных Li-Ion-аккумулятора 3,7 В 2200 мА·ч и подключаемая батарея внешнего блока аккумуляторов), и импульсный преобразователь 4-15 В с током до 1,5 А (при напряжениях до 5 В и с пропорциональным уменьшением при повышении выходного напряжения), и умный контроллер зарядки (от сетевого адаптера, USB, солнечных батарей, вело-динамо) встроенных аккумуляторов, и контроллер зарядки внешних аккумуляторов разных типов. При этом операции зарядки самого «Вампирчика» и питания от него могут производиться синхронно. Есть удобная светодиодная индикация и встроенный цифровой индикатор.

Из недостатков могу отметить два: «городское исполнение» и отсутствие жесткой защиты от дурака. Первое означает, что на работу под дождем или при сильной тряске «Вампирчик» не рассчитан, держать его лучше в герметичном и защищающем от механических повреждений чехле, а устройства подключать к разъемам аккуратно. Что касается «дурака», то с ним сложнее — защиту нужно придумать самому. Так, у меня был опыт съемки, когда я использовал «Вампирчик» для питания камеры и после трех часов работы уже не мог сообразить, как же вставить разъем внешнего аккумуляторного блока (да, еще его штыревые контакты ничем не защищены от случайного КЗ на любую мелкую железку — я просто надел на них кусочек канцелярской резинки-стерки) и воткнул его в «Вампирчик» наоборот. Ну это уж «сам дурак», и ничего не поделаешь. Я думаю, что если бы защита «от дурака» была жестче, устройство бы потеряло в универсальности.

Одна из функций «Вампирчика» — цифровая индикация режимов работы. Она может использоваться не только для точной настройки выходного напряжения, контроля зарядки внешних аккумуляторов, но и, к примеру, для оценки потребления энергии камерой в различных режимах работы. Далее приведена таблица потребления тока камерами Canon EOS 600 D и PowerShot G9 в различных режимах работы. Значения величин тока для краткосрочных процессов (полунажатие на спуск, спуск, фокусировка) — пиковые. Если величина случайно меняется — приведены границы диапазона. Если процесс многоступенчатый (полунажатие — нажатие на спуск — запись данных — пауза) приведены несколько пиковых значений, которые можно отнести к разным этапам работы камеры.

Режим съемки / камера Canon EOS 600D, EF 28—135 мм IS,
А
Canon PowerShot G9,
А
Камера включена (режим съемки) / дисплей выключен 0,05 0,05
Камера включена (режим съемки) / дисплей включен 0,25—0,15 0,3—0,35
Полунажатие / Нажатие на спуск
АФ вкл. / стабилизация выкл./ дисплей выкл.
0,3-0,5-0,05 0,25-0,35-0,1
Полунажатие / Нажатие на спуск
АФ вкл. / стабилизация выкл./ дисплей вкл.
0,3-0,5-0,15 0,35-0,3-0,3
Полунажатие / Нажатие на спуск
АФ вкл. / стабилизация вкл./ дисплей выкл.
0,3-0,5-0,05 0,35-0,3-0,1
Полунажатие / Нажатие на спуск
АФ вкл. /стабилизация вкл./ дисплей вкл.
0,3-0,5-0,15 0,4-0,3-0,3
Просмотр фото 0,25—0,15 0,1
Просмотр видео 0,3—0,2 0,1—0,15
Зарядка вспышки 1,4—0,8 0,6
LiveView 0,6
Live View, Полунажатие / Нажатие на спуск
АФ вкл. / стабилизация вкл.
0,8-0,7-0,7

Самые прожорливые потребители: вспышка и матрица с дисплеем в режиме Live View. А вот на стабилизации и фокусировке, а также на просмотре картинок (в течение кратких просмотров после съемки),кажется, можно не экономить.

Содержание / Contents

↑ Схема блока питания для фотоаппарата Nikon Coolpix L25 и др.

Необязательно использовать именно данную схему. Я просто привёл её как пример. Напряжение и ток на выходе блока питания должны соответствовать напряжению устройства и его токопотреблению (желательно с запасом).

↑ "Муляж" батареек АА как средство подключения стационарного питания

Но тема данной статьи относится больше ко второму пункту — как подвести это напряжение. Не на всех фотоаппаратах есть специальный разъем внешнего питания. И даже когда он есть, совсем не тривиальная задача — найти ответный штеккер и угадать полярность. Ошибиться можно только 1 раз.

Нужен переходник, адаптер, муляж батареек! Из чего можно сделать муляж батареек? Нужно что-то цилиндрическое, полое внутри, чтобы припаять провода к контактам, а также установить дополнительные детали (о них чуть позже). По-моему, самое простое и лучшее решение — использовать для этого одноразовые 5-кубовые шприцы. Диаметр 5-кубовки 14 мм, что соответствует диаметру АА батарейки.
Берём два шприца. Отмеряем со стороны носика 50 мм и отрезаем острым ножом всё лишнее (носик, естественно, тоже). Минусовой контакт я сделал так. Нашёл омеднённый болт (не помню точно — М6 или М8), отрезал от него головку, немного обточил её на наждаке, сбоку просверлил отверстие и нарезал резьбу М2. С помощью винтика с потайной головкой потом прикрутим к шприцу так, чтобы ни за что не цепляло при вставке адаптера в отсек. Ну и обязательно залуживаем место под пайку.

Плюсовым выводом будет служить потайная головка винта М3, прикрученного ко второму шприцу. Изнутри к нему прикрутим контактный лепесток. Обратную сторону этого шприца закрываем заглушкой из оргстекла, обточенной до такого размера, чтобы плотно входила. Между собой шприцы я соединил при помощи двух втулок от наконечников для проводов 2,5 мм². Вставил их в заранее сделанные отверстия и сжал пинцетом сколько смог.

Теперь о дополнительных деталях. Так как в момент включения фотоаппарата происходит скачок потребления тока (запуск механики), то для надёжного запуска, а также для дополнительной фильтрации напряжения я установил внутрь одного из шприцов электролитический конденсатор 2200 мкФ, подсоединив его параллельно контактам с соблюдением полярности. Также я зашунтировал его керамическим конденсатором 0,1 мкФ. Плюсовой провод от блока питания я подключил не напрямую к контакту, а через кремниевый диод с прямым током 2 А. Диод выполняет две функции: во первых, гасит "лишние" 0,6 — 0,7 В от блока питания, и во вторых, защищает от неправильной полярности подключения.

Кстати, смонтировать детали внутри шприцов — самый трудный этап, требующий усидчивости, терпения и некоторой сообразительности.

Какой взять провод? Для удобного пользования достаточно будет провода длиной 1,5 — 2 метра. Провод лучше брать гибкий медный многожильный. Я использовал отрезок провода от индуктивного датчика. Можно от геркона, или любой подходящий, чтобы проходил в отверстие на фотоаппарате.
Ещё в настройках фотоаппарата нужно установить "правильный" тип батарей — щелочные.

Теперь можно вставлять адаптер в отсек, включать питание, и снимать сколько угодно, не беспокоясь, что аккумуляторы разрядятся в самый неподходящий момент.

Фотки размытые, так как снимал другим фотоаппаратом, в котором отсутствует режим макросъёмки.

↑ Решения для батарей и аккумуляторов других размеров и форматов

Внутри поместился маленький электролит 22 мкФ. Питал от этого же БП напряжением 3,7 В без дополнительного диода.

Область применения адаптеров может быть различной. Можно запитывать некоторые детские игрушки, такие как детские ноутбуки, музыкальные инструменты, но только, конечно, не машинки или другие движущиеся игрушки. Количество батареек может быть любым, соответственно ему выбираем напряжение блока питания.

Да, вспомнил. Давно уже делал я вот такую коробочку (19 х 26 х 48) — адаптер для питания MP3-плеера на одной батарейке ААА.

Здесь "батарейка" — футлярчик от тонких графитовых стержней. Схема аналогичная:

Коробочка в действии:

Ещё одно применение. Моя тёща — гипертоник. Ей приходится очень часто измерять давление электронным тонометром, она практически не расстаётся с ним. А при частом использовании батарейки быстро садятся. Я сделал ей адаптер из 2-кубовых шприцов (соответствуют размеру батареек ААА).

В качестве блока питания я взял старое зарядное устройство от Sony Ericsson c выходным напряжением 5 В. Внутри одного из шприцов разместил три последовательно соединённых диода. В сумме падение напряжения на них получается около 2 В. Шприцы между собой я просто смотал скотчем. Теперь тёща, когда находится дома, пользуется моим адаптером, а когда рядом нет розетки — вставляет батарейки, на которые теперь уходит меньше денег.