Для большинства моих подписчиков не секрет что я специализируюсь на изготовлении элементов выхлопной системы, а именно на изготовлении резонаторов и глушителей.

К написанию данной записи побудил очередной вопрос "почему так дорого?". Вопрос символический или риторический я не знаю, но так как это я слышу не в первый раз то решил немного разжевать эту тему.

Начнем с резонатора.
Сначала внесу небольшую выдержку из Википедии:
Пламегаситель или «предварительный глушитель» (также известный как «резонатор») — обеспечивает отражение волн выхлопа (отсюда название «резонатор») и первую ступень снижения шума и пульсаций газов.

Приведу основные критерии тишины выхлопной системы и ее элементов:
— Диаметр трубы. Чем больше тем громче, но это не значит что лучше. Всему есть свои разумные размеры. Сюда же можно отнести и изгибы самой трубы, но они уже влияют на громкость в меньшей степени.
Поток выхлопного газа должен иметь скорость на выходе, а не свободно метатться по трубе.
Тут принцип "пацаны одобряют" или "говорят что сразу полетит" при выборе диаметра не подойдет, лучше посмотрите графики чуть ниже. Придумано не мной, а проверенно многочисленными замерами.

Объем резонаторов/глушителей и их количество. Тут все наоборот нежели с диаметром трубы, чем больше — тем тише. Если нет возможности сделать большой резонатор/глушитель, то можно установить два поменьше.

Чем больше объем тем лучше, но нужно использовать этот объем с умом, потому что чем больше волна преломляется тем тише. То есть чем ниже скорость потока выхлопных газов, тем тише звук выхлопа.

Внутренняя набивка резонаторов глушителей должна держать температуру выхлопных газов и не должна вылетать со временем (для справки: температура выхлопных газов атмосферного/турбированного автомобиля обычно не превышает 800 градусов, выше только при использовании спортивного топлива).

Вернемся к моему процессу изготовления. Для меня изготовление резонаторов обкатано и каких либо радикальных изменений в его конструкции уже не будет.
Конструкция проста: перфорированная труба и набивка.
Естественно все делается не ТЯП ЛЯП. Изначально труба расчеркивается по лекалу, далее устанавливается на специальное приспособление и сверлится. Все это нужно что бы ряды и отверстия были ровными и в необходимом количестве.

После сверления трубу необходимо обработать с внутренней стороны для удаления заусенций образовавшихся в процессе сверления, которые в последствии могут испортить звук своим свистом.

Основная часть готова, укладываем звукопоглощающий материал (набивку). Я использую стеклорогожу или по простому крупная, плетенная стеклоткань.
Данная стеклорогожа не плавится в печи на раскаленных углях, а плетенная структура предотвращает ее вылетание через отверстия. Так же проверял ткань после использования резонатора на автомобиле, даже цвет не поменяла.

Уложили ткань, зафиксировали и закрываем корпус.

На днях было изготовлено два резонатора на 50 и 60мм трубе.

Единственно над чем еще стоит поработать это "внешность" моей продукции. Все таки качество качеством, а красота играет тоже не маловажную роль.

Заварили корпус, почистили, протерли и красим. Краска высокотемпературная, до 650 градусов. На Волге после 4000 км. краска все так же сидит на трубе и глушителях с резонаторами, лишь на коллекторах места ошелушилась, но там и температура выше.

Кстати, направление потока в моем резонаторе тоже играет роль.

Глушитель.
Тут все сложнее, а именно сама конструкция, так как глушитель или конечная банка должна придать окончательный звук и сделать его необходимой громкости. Потому конструкция везде может быть разной.
Но принцип всегда один: ниже скорость потока на выходе — тише звук.
Пустые камеры гасят низы, заполненные камеры — верха. Различное деление потока так же создает глушение звука за счет наложения волн.

К тому же, в отличии от резонаторов которые имеют +/- стандартные размеры, глушители изготавливаются по индивидуальным размерам, разной формы и разной сложности.

И приведу пример вчерашней работы по изготовлению круглого глушителя.

Немного калькуляции затрат на производство одного резонатора/глушителя:
— Труба от 250 руб.
— Листовой металл от 150 руб.
— Набивка от 250руб.
— Краска, растворитель — от 30 руб.
— Расходы на резак, болгарку, сварку, свет и т.д. — *** руб.

А теперь скажите сколько такая работа должна стоить?

Сегодня очередной резонатор моего производства отправляется к своему заказчику.
Резонатор с фотографий выше был изготовлен драйвовцу Волговоду roman272452 .
Резонатор меньшего диаметра будет установлен на Honda Accord.
Глушитель изготавливается для установки на УАЗ вместо штатного, на родные крепления.

Для любителей "зацепиться к мелочам" скажу что не претендую на звание "Сенсея" по выхлопным системам. Основные знания приобретаются из книжек и личного опыта.

Комментарии 193

Привет, для хороших шовчиков полуавтомат нужен, если из чермета варишь. Или аргон, если нержа.

Подскажи как с размерами определиться, длина, диаметр наружний, длина резонатор, сколько на стекло ткани витков.

Чем длиньше тем лучше, а вот наружный диаметр 100-120мм делай что бы сильно снизу не торчал

Глушак на 3х литровый турбо мотор очень тихий в какую цену обойдется?

грамотно.швы по аккуратней и можно ставить пломбу и задирать ценник.я пробовал из нерж варить разбирали как горячие пирожи.Удачи в трудах

Михаил, заинтересовала фраза про глушитель на уаз взамен штатного, если можно в личку отпишитесь — стоимость, какие улучшения наблюдаются в двигателе и т.п.

Добрый вечер, а можно попросить у вас чертеж или хотя бы размеры глушителя для Уаз, есть желание самостоятельно сделать

Здравствуйте уважаемый Михаил! История такова: у меня Волга 31105 с 406 двигателем и выхлопной системой от Крайслера (да, да… есть такие мутанты!) . Звук этой системы меня полностью устраивал а вот цена её элементов нет. Не устраивала она по той причине что оригинальные глушители Крайслера держались почти четыре года (!) а те, типа "Крайслеры", что продаются в магазинах живут от силы полтора года при том что цена их одинаково большая. Менял глушитель почти каждый год, мне это надоело и я решил снять всю крайслеровскую систему выхлопа и заменить на стоковую стандартную волговскую. Результат мне не понравился категорически! По этому принял решение вернуть выхлопной коллектор от Крайслера и самому сделать остальные элементы. Изначально выхлопной тракт представлял из себя цепочку: коллектор, нейтрализатор, S образная труба переводящая выхлопную систему с одного борта машины на другой, глушитель, "гусь" и резонатор. Я решил от некоторых элементов этой цепочки избавиться. А именно думаю сделать так: резонатор, пламегаситель вместо нейтрализатора (у меня евро-2, по этому лямбде ничего мешать не будет — она одна и стояла перед нейтрализатором), прямая труба (чтобы не перекидывать с борта на борт систему а пустить по одной стороне машины), резонатороглушитель (хочу эти два элемента попробовать объединить), и гусь с выходом в атмосферу. Как думаете, такая конструкция имеет право на жизнь? Заранее благодарен за ответ.

Автоликбез 30 августа 2017

В процессе езды коленчатый вал двигателя авто совершает от 1,5 до 5–7 тыс. оборотов в минуту. Соответственно, в цилиндрах происходит 25–120 вспышек и микровзрывов топлива ежесекундно. В результате выделяется толкающая поршни энергия, отработанные газы и мощные звуковые волны. Чтобы убрать громкий рокот и шум из выхлопной трубы, доставляющий неудобства водителю и окружающим, было изобретено звукопоглощающее устройство – глушитель. Поскольку он служит не вечно, автолюбителям полезно будет знать, как устроен данный элемент и можно ли его отремонтировать в случае неисправности.

Где находится элемент и как он выглядит?

Главный источник шума – камеры сгорания работающего двигателя. Образующиеся там звуковые волны не могут проникать сквозь сплошные металлические стенки и стремятся выйти наружу по пути наименьшего сопротивления – через трубу выпускного тракта вместе с отработанными газами. Там и установлен глушитель в виде металлического бочонка круглой либо овальной формы.

Схема работы выхлопной системы автомобиля выглядит так:

  1. Первой за выпускным коллектором установлена виброизоляционная гофра. Ее задача – сгладить колебания, передающиеся трубе от мотора.
  2. Пройдя гофру, дым и звуковые волны попадают в каталитический нейтрализатор. Его задача – дожечь остатки горючих газов, чтобы не выбрасывать в атмосферу. Внутри детали расположены мелкие керамические соты, которые частично поглощают и рассеивают звук.
  3. После нейтрализатора выхлоп проходит в бачок резонатора. Это первая ступень подавления шума.
  4. Последним в цепочке стоит глушитель, окончательно гасящий звуковые колебания.

По сути, резонатор – это тоже глушитель, его строение и принцип действия вы узнаете из следующего раздела.

Бачок резонатора всегда стоит вдоль оси машины, а глушитель может устанавливаться поперек (в задней части авто). Встречаются варианты, когда оба элемента совмещены в едином корпусе с целью экономии места. На автомобилях с V-образными двигателями большой мощности устанавливается распределенная система выхлопа на 2 трубы. Соответственно, количество всех деталей удваивается.

Конструкция и принцип действия

Существует 4 способа погасить мощные звуковые импульсы, реализуемые на различных транспортных средствах:

  • ограничение шума;
  • отражение;
  • резонансное подавление шумов;
  • поглощение.

Ограничивающее устройство – простейший вариант глушителя, применяющийся на некоторых моделях тракторов. Элемент представляет собой сужающуюся трубу, помещенную внутрь металлического бачка. Недостатки изделия очевидны – шум подавляется частично, а мощность двигателя заметно снижается.

Зеркальные элементы ставятся на мотоциклы и скутеры. Принцип работы глушителя следующий: газы из выхлопного колена попадают в отражающую банку, меняют направление движения и выбрасываются наружу. За счет отражения звуковые колебания гасятся и уровень шума снижается. Деталь успешно функционирует с двухтактными моторами, но для автомобиля ее эффективности недостаточно.

Третий способ реализован в автомобильных резонаторах. Внутри стального бачка стоит несколько перегородок, а между ними устроены резонансные камеры, соединенные стальными трубками. Сглаживание шумовых импульсов достигается за счет двух факторов:

  1. Газы и звуковые волны несколько раз меняют направление движения, отражаясь от перегородок.
  2. Размеры камер и патрубков рассчитаны таким образом, чтобы частота колебаний звука совпадала. Тогда волны гасятся благодаря возникающему резонансу.

Необходимо понимать, что конструкция резонатора не является универсальной для всех машин. Автомобили комплектуются двигателями различной мощности, издающими шумы разной амплитуды и частоты. Звукопоглотитель разрабатывается отдельно под каждую марку и модель автомобиля.

Устройство глушителя автомобиля в разрезе, действующего по принципу поглощения шумов, изображено на схеме.

Как и в резонаторе, здесь устанавливаются перегородки и перемычки в виде трубок. Только в последних выполнено множество отверстий различного диаметра (перфорация), а по бокам уложен негорючий поглощающий материал. Как правило, для данных целей используется базальтовая либо каолиновая вата, спокойно выдерживающая температуру газов 600–700 °С.

Звуковые волны, проходя через соседние патрубки с отверстиями, частично рассеиваются и гасятся за счет наложения друг на друга. Вторая часть колебаний поглощается наполнителем, а третья сглаживается благодаря перегородкам и изменению направления потока.

О прямоточной системе

Любой автомобильный глушитель снижает мощность двигателя, создавая значительное сопротивление на пути потока дымовых газов. Такую цену приходится платить за комфорт и практически беззвучный выхлоп. Но для автомобилистов, занимающихся тюнингом своих «железных коней», существует альтернативный вариант – звукопоглотитель прямоточного типа.

Задача данного элемента – снизить потери мощности, продолжая поглощать звуковые колебания от работы двигателя. Прямоток является компромиссным решением, поскольку в угоду мощности он гасит шум не столь эффективно, как штатные элементы авто. Из чего состоит такой глушитель:

  • металлический корпус, оснащенный двумя патрубками;
  • внутри находится перфорированная прямая труба, соединяющая входное и выходное отверстие;
  • между корпусом и трубой заложен звукопоглощающий материал – каолиновая или базальтовая вата.

Звуки, идущие по прямой трубе с отверстиями, частично поглощаются волокном, но другая часть беспрепятственно проходит наружу, ведь перегородки и резонансные камеры отсутствуют. Поэтому автомобили, оборудованные прямотоком, издают рокочущий звук, особенно при нажатии на педаль акселератора.

Высший уровень тюнинга – комбинированная система выхлопа с заслонкой, управляемой из салона автомобиля. С ее помощью поток газов можно переключать между двумя ветками: на первой стоит обычный эффективный глушитель, а на второй – прямоток. Это позволяет использовать мощь мотора только при необходимости, а в обычных условиях ездить по городу без лишнего «рева» из выхлопной трубы.

Характерные неисправности

Существует одна причина, по которой глушитель автомобиля выходит из строя – длительное воздействие отработанных газов, обладающих высокой температурой. Рано или поздно металлический корпус элемента прогорает, что сопровождается рокотом под днищем автомобиля (оттуда, где расположена неисправная деталь).

Срок службы глушителя сильно зависит от материала, из которого он изготовлен:

  • обычный «черный» металл со специальным покрытием;
  • нержавеющая сталь.

Более дешевый вариант, сделанный из «черного» металлопроката, способен прогореть через 20–30 тыс. км пробега, в то время как нержавеющий корпус отработает 100 тыс. км и больше. Другое дело, что в течение длительного срока могут выгореть внутренности глушителя и уровень шума заметно повысится.

Неисправности устраняются двумя способами: замена глушителя и ремонт с помощью сварки. В любом случае вам придется посетить автосервис, где после диагностики мастера помогут принять верное решение. Если отверстие свища небольшое, то опытный специалист заварит его прямо на машине. Второй вариант – наложить заплатку из металла, для чего глушитель потребуется снять. Элемент с выгоревшими внутренностями ремонту не подлежит, только замене.

Устройство глушителя, несмотря на кажущуюся проделываемую им большую работу в подавлении такого сильнейшего звука работы двигателя, на самом деле достаточно простое: внутри глушителя Вы найдёте обманчиво простой набор трубок с проделанными отверстиями в них. Эти трубки наряду со специальными камерами на самом деле устроены как тонко настроенный музыкальный инструмент, который на сегодняшний день не просто глушит работу двигателя, но и создаёт особый звук, приятный для слуха многих автолюбителей, особенно, в случае применения его на спортивных автомобилях.

Глушитель в разрезе

Таким образом, глушители предназначены для отражения звуковых волн, производимых двигателем таким образом, чтобы они (волны) частично подавляли сами себя. Глушители используют достаточно тонкую технологию, чтобы подавить этот шум. Так как же устроен глушитель? Давайте разберёмся в этом! Но для начала мы должны узнать немного больше о физике звука.

О звуке

Звуковые волны формируются из импульсов переменного высокого и низкого давления воздуха в цилиндрах двигателя. Эти импульсы делают свой ​​путь по воздуху со скоростью звука. Данные импульсы создаются в двигателе в то время, когда открывается выпускной клапан, и взорванная смесь топлива и воздуха под высоким давлением вдруг выходит в систему выпуска отработавших газов. Молекулы в этом газе сталкиваются с молекулами в трубе, находящимися под более низким давлением. Они, в свою очередь, сталкиваются с молекулами далее вниз по трубе, в результате чего и создаётся такой звук. Таким образом, звуковая волна пробивается вниз по выхлопной системе (а, точнее, спереди назад) гораздо быстрее, чем из неё выходят выхлопные газы.

Когда эти импульсы давления достигают Вашего уха, то они воздействуют на барабанную перепонку, заставляя её вибрировать. А Ваш мозг интерпретирует это движение перепонки как звук. Две основные характеристики волны определяют, как мы воспринимаем такой звук:

  1. Частота звуковой волны — более высокая частота волны просто означает, что давление воздуха колеблется быстрее. Чем быстрее работает двигатель, тем более высокий тон мы слышим (давайте вспомним жужжание болидов Формулы-1 или проезжающих на высокой скорости спортивных мотоциклов). Более медленные колебания звучат более низким тоном (наиболее характерный звук создают дизельные двигатели, двигатели мотоциклов Harley Davidson на холостых или невысоких оборотах).
  2. Уровень давления воздуха — амплитуда волны определяет, насколько громким будет звук. Звуковые волны с большими амплитудами перемещения наших барабанных перепонок имеют большее давление, и мы регистрируем это ощущение как больший объём шума.

Но оказывается, что можно совместить две или более звуковые волны вместе и получить (!)меньший звук. Давайте рассмотрим, как это работает, на примере устройства глушителя!

Главной особенностью нашего восприятия звуковых волн является то, что результирующий шум в нашем ухе является фактически суммой всех звуковых волн, которые достигают барабанной перепонки в одну единицу времени. Если Вы, к примеру, слушаете какую-либо из песен Металлики, то Вы можете слышать одновременно игру на барабанной установке и на трёх гитарах в виде единой сочетающейся музыки, но если прислушаться к любой такой песне, то можно услышать несколько различных источников звука (кроме разве что отличить игру на барабанах и бас-гитаре) — волны звукового давления, достигая барабанной перепонки, складываются вместе, так что Ваша барабанная перепонка только чувствует одно давление в любой конкретный момент времени.

А теперь практическая часть устройства глушителя по части подавления звука: дело в том, что можно производить звуковую волну, которая прямо противоположна другой одинаковой ей волне, и именно это является основой для шумоподавления — две одинаковые волны попросту либо глушат друг друга, либо образуют волну с вдвое бóльшей амплитудой. Взгляните на анимацию ниже. Волна, надвигающаяся сверху и волна посередине являются чистыми одинаковыми тонами. Если эти две волны находятся в унисоне — то есть если они накладываются друг на друга с той же частотой, тогда они образуют одну волну, но с вдвое большей амплитудой. В науке это называется конструктивной интерференцией. Но, если они накладываются друг на друга в противоположных фазах, когда низшая точка амплитуды первой волны в один момент времени совпадает с высшей точкой амплитуды второй волны, то тогда они попросту подавляют друг друга вплоть до нулевого звука. И это уже называется деструктивной интерференцией. В то время когда первая волна достигает своего максимального давления, вторая волна достигает своего минимума. Если бы обе эти волны ударили барабанную перепонку в одно и то же время, то Вы бы не услышали ничего, потому что эти две волны всегда гасят друг друга.

Как устроен глушитель изнутри?

Глушитель по своей сути представляет собой набор трубок. Эти трубки предназначены для создания отражения звуковых волн, которые мешают друг другу и в конечно итоге уравновешивают друг друга.