Сопротивление дистиллированной воды ом

6 августа 2019 0 Автор

Мы проведем несколько простых опытов по демонстрации электропроводности воды и водных растворов электролитов, а также по химическому действию переменного тока напряжением 220 В и 50 Гц (электролизу с переменным током), но с самого начала давайте договоримся о нескольких простых вещах, от которых зависит безопасность (ваша и окружающих людей).

В описанных ниже опытах используется напряжение 220 В от осветительной сети. Это несет угрозу поражения электрическим током (вплоть до смертельных случаев). Также вы рискуете устроить короткое замыкание (КЗ): в лучшем случае сгорят пробки или выбьет автомат, в худшем случае перегорит проводка и может случиться пожар.

Первое, что следует уяснить. Сила тока в ваших опытах не должна превысить определенного критического значения — иначе что-то сгорит (предохранители пробок, проводка, в лучшем случае — выбьет автомат).

Если просто включить вилку в розетку и соединить провода — произойдет фейерверк. Сопротивление проводов низкое — доли ома (так и должно быть, чтобы электрическая энергия не терялась зря), напряжение — 220 В. Согласно закону Ома сила тока I прямо пропорциональна напряжению U и обратно пропорциональна сопротивлению R:

Напряжение — высокое, сопротивление — низкое, соответственно ток будет высоким — произойдет КЗ. Чтобы этого избежать, в цепь необходимо включить электрическое сопротивление, в нашем случае это лампа накаливания на 220 В. Она не даст току вырасти слишком сильно — даже если соединить провода.

Во ВСЕХ опытах, описанных в данной статье, ПОСЛЕДОВАТЕЛЬНО с электродами должна быть включена электрическая ЛАМПА на 220 В. В опытах по электропроводности лампа необходима, чтобы увидеть, идет ли через цепь ток, в опытах по электролизу лампа наоборот отвлекает внимание от ячейки, но все равно она должна быть в цепи, иначе — КЗ и фейерверк.

Если вы включите лампу накаливания (или другое сопротивление) не последовательно, а параллельно, — произойдет короткое замыкание, т.к. в данном случае сопротивление бесполезно: ток пойдет в обход лампы через участок с низким сопротивлением.

Второй важный момент. Во время работы ячейка с электролитом (или водой) находится под высоким напряжением. Не вздумайте перемешивать содержимое металлическим шпателем, ложкой и т.п. Если вы будете что-либо подливать в ячейку — струя жидкости и содержимое стаканчика (который у вас в руках) также окажутся под напряжением.

Работайте в толстых резиновых перчатках, лучше — в обуви на резиновой подошве. Держитесь подальше от заземленных предметов (батареи отопления, водопровод и т.д.) Если вы работаете не в помещении, а на улице и стоите на земле (особенно — влажной), это плохо.

Что будет, если прикоснуться к оголенному электрическому проводу под напряжением 220 В? Результат зависит от многих факторов, но их влияние сводится к приведенному выше закону Ома. В школе учитель физики нам говорил: "Убивают не вольты, убивают амперы". При всей образности, такое высказывание передает суть.

Чем выше сила тока, который проходит через ваше тело, — тем хуже для вас! А сила тока пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению. Напряжение фиксировано — 220 В, значит сопротивление должно быть как можно больше. Основную долю сопротивления человеческого тела дает кожа. При расчетах принимается, что сопротивление тела человека равно 1000 Ом (1 кОм) [K1]. Обычно сопротивление человека значительно выше, но не стоит на это надеяться. Если кожа сухая — все хорошо, если мокрая — ее сопротивление резко падает, если кожа не просто мокрая, а пропитана раствором электролита — ее сопротивление падает очень резко. А мы будем работать как раз с растворами сильных электролитов — руки во время опытов должны оставаться сухими!

Если вы коснулись одного электрода — ток через ваше тело потечет в землю. Когда вы стоите на полу из изолятора — сила тока будет минимальной, т.к. сопротивление пола, обуви и фундамента здания высокое. Скорее всего, вы отделаетесь легким испугом. Но если при этом вы касаетесь металлических предметов, соединенных с землей, например, трубы водопровода или батареи — вас может убить. Сопротивление металлических труб низкое — ток будет высоким.

Большое значение также имеет то, каким путем пройдет электрический ток через ваше тело. Хуже всего, когда этот путь лежит через сердце и другие жизненно важные органы. Плохо, если вы коснетесь одновременно двух проводов обеими руками — тогда ток потечет не через тело в землю, а из одного провода через тело в другой провод — как раз через сердце.

В свое время так увлекся экспериментом, что случайно коснулся пальцами одной руки сразу двух электродов под напряжением 220 В. Кожа была сухой, ток шел только через пальцы, поэтому такая неосторожность сошла мне с рук (причем дважды). Почувствовал подергивание. Но если бы кожа была мокрой — последствия могли бы быть серьезными.

Электропроводность, электролиты, электролиз с переменным током ч.2

Электропроводность дистиллированной воды, воды из-под крана и растворов сильных электролитов можно продемонстрировать с помощью простой установки. Стакан (я взял стакан на 500 мл), лампа на 220 В и два электрода (гвоздя), к которым подведен ток от осветительной сети. Лампа и электроды подключены ПОСЛЕДОВАТЕЛЬНО (повторю еще раз) — даже если электроды соприкоснуться, короткого замыкания (КЗ) не будет: ток пойдет через лампу, а она имеет достаточное электрическое сопротивление, чтобы удержать силу тока в сети в допустимых рамках.

Один гвоздь опущен в стакан и закреплен в штативе, второй электрод (гвоздь) привязан к стеклянной палочке так, чтобы палочку можно было взять в руки и двигать электрод.

Налил в стакан дистиллированную воду. Один электрод оказался под водой, другой я взял и опустил в воду (с помощью стеклянной палочки). Оба гвоздя в воде, но лампа не горит: спираль абсолютно не светится. Электропроводность дистиллированной воды настолько низкая (а сопротивление — настолько высокое), что ток между электродами практически не идет.

Теперь прикоснемся подвижным электродом к закрепленному — лампа ярко загорится.

Электропроводность дистиллированной воды

Раньше я использовал немного более простую установку: в ней оба электрода были жестко закреплены. Электроды опустил в небольшой стаканчик с водой — разумеется, лампа не горела. Чтобы лампа загорелась, прикоснулся к обоим электродам отверткой. Цепь замкнулась, лампа загорелась.

Кстати, именно к этим электродам (см. фотографии) я случайно прикоснулся пальцами, когда они были под напряжением 220 В. Правда то был совсем другой эксперимент.

Электропроводность дистиллированной воды

Если вместо дистиллированной воды налить воду из-под крана, лампа тускло, но загорится: в водопроводной воде достаточно растворенных солей.

Кстати, и в дистиллированной воде есть ионы. Во-первых, вода диссоциирует:

во-вторых, вода содержит растворенный углекислый газ, который образует с водой слабую угольную кислоту (благодаря этому рН дистиллированной воды может быть ниже 6). А, в-третьих, даже дистиллированная вода полностью не свободна от примесей. Просто ионов в дистилляте слишком мало, чтобы обеспечить достаточную электропроводность.

Электропроводность воды из-под крана

К1 Кожа человека имеет сопротивление порядка 1 МОм (у меня 1.5 МОм). У людей с сухим типом кожи оно может быть и выше. Но эта величина условная, поскольку кожа обладает диэлектрической проницаемостью и для нее существует напряжение пробоя. Для сухой кожи человека в сухом помещении оно колеблется от 60 до 90 В. Если напряжение превышает этот предел, то току ничего не мешает течь по нервным волокнам и кровеносным сосудам, повреждая внутренние органы.

В то же время существуют люди у которых кожа настолько сухая, что уже 50 Гц хватает для проявления скин-эффекта, когда ток течет только по поверхности кожи не затрагивая внутренние органы. Людей с подобным косметическим дефектом (это именно так и называется) любят на телевизионных передачах про различные феномены и необъяснимые явления.
Upsidesium

Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА (0.1 A). Совершенно безопасным считается ток силой до 1 мА.

#1 svv

#2 diadya-fedor

#3 olegg-big

#4 Dolly

Сегодня пошел в гараж. Смотрю знакомый мужик воду набирает с крыши. У нас тут давеча снегу навалило и теперь он весело тает. Ну мужик и говорит набирай быстрей вода типа дистилированная. Я сначала не поверил, но мысль закралась, тем более, что надо скоро антифриз в системе охлаждения менять и бодяжить концентрат с дистилированной водой. Решил проверить — сравнить электрическое сопротивление воды с крыши и дистиллированной из магазина. Короче померял и был сильно удивлен. Для контроля померял еще водопроводную обычную воду. Короче Водопроводная вода — 3кОм, магазинная дистилированная — 5кОм, с крыши — 180кОм. Мерял обычным китайским тестером налив воду в пробку от полторашки и сунув туда провода по краям. На точность не претендую, но сам порядок величин говорит сам за себя. Вода, которая текла по грязной крыше, а потом по ржавому водостоку имеет сопротивление большее в 36 раз чем магазинная. У меня была дистилированная вода кажется фирмы аква или что-то в этом роде. Взял у соседа еще одну бутылку уже не аквы, но тоже магазинной — 7кОм -короче фуфуло такое-же. Набрал в пластиковые канистры 20л снеговой воды, отфильтрую и в путь — хватит и на промывку и на антифриз. Короче советую если покупаете воду в магазине, то хотябы меряйте ее сопротивление прежде чем использовать, а то с таким же успехом можно наливать из-под крана. Или берите в аптеке, там ее вроде правильно выпаривают, но и стоит она дороже.

#5 svv

#6 Nik_ko

сопротивление воды показывает наличие в ней примесей и солей. В идеале должно быть бесконечное. Кипячение все эти соли ни коим образом не выводит, и осядут они в виде отложений в системе охлаждения.

#7 Гость_il2006_*

сопротивление воды показывает наличие в ней примесей и солей. В идеале должно быть бесконечное. Кипячение все эти соли ни коим образом не выводит, и осядут они в виде отложений в системе охлаждения.

#8 zaq

#9 Дмитрий-Хлам

Вообще скажу так, сам работаю в одной из лабораторий города и чистоту воды на лоли мерием обратным способом — методом удельной электропроводности с помощью спец прибора (кондуктометра), принцип тот же талько все откалибровано и установлено. Никогда не покупал и не собираюсь, так что кому надо — пишите, приезжайте с канистрами и пивом , наберу сколько нада.

#10 Valentin

PS А самому дистиллировать воду проблема, особенно при наличии газовой плиты?

#11 Dolly

сопротивление воды показывает наличие в ней примесей и солей. В идеале должно быть бесконечное. Кипячение все эти соли ни коим образом не выводит, и осядут они в виде отложений в системе охлаждения.

#12 Гость_il2006_*

+ скороварки, трубок и змеевика как в старые добрые времена.

#13 vitaliy63

#14 Kuzmich

А я вот всё понять не могу. Тоби то это нах нужно? Из принципу? Жижу в охлаждайку бери готовую, акк давно все нормальные люди берут необслуживаемый. Где сцобака зарыта?

#15 Дмитрий-Хлам

А я вот всё понять не могу. Тоби то это нах нужно? Из принципу? Жижу в охлаждайку бери готовую, акк давно все нормальные люди берут необслуживаемый. Где сцобака зарыта?

Перевести единицы: микросименс на сантиметр [мкСм/см] сименс на метр [См/м]

Объем сыпучих веществ и меры объема в кулинарии

Введение и определения

Удельная электрическая проводимость (или удельная электропроводность) является мерой способности вещества проводить электрический ток или перемещать электрические заряды в нем. Это отношение плотности тока к напряженности электрического поля. Если рассмотреть куб из проводящего материала со стороной 1 метр, то удельная проводимость будет равна электрической проводимости, измеренной между двумя противоположными сторонами этого куба.

Удельная проводимость связана с проводимостью следующей формулой:

где G — электрическая проводимость, σ — удельная электрическая проводимость, А — поперечное сечение проводника, перпендикулярное направлению электрического тока и l — длина проводника. Эту формулу можно использовать с любым проводником в форме цилиндра или призмы. Отметим, что эту формулу можно использовать и для прямоугольного параллелепипеда, потому что он является частным случаем призмы, основанием которой является прямоугольник. Напомним, что удельная электрическая проводимость — величина, обратная удельному электрическому сопротивлению.

Людям, далеким от физики и техники, бывает сложно понять разницу между проводимостью проводника и удельной проводимостью вещества. Между тем, конечно, это разные физические величины. Проводимость — это свойство данного проводника или устройства (например, резистора или гальванической ванны), в то время как удельная проводимость — это неотъемлемое свойство материала, из которого изготовлены этот проводник или устройство. Например, удельная проводимость меди всегда одинаковая, независимо от того как изменяется форма и размеры предмета из меди. В то же время, проводимость медного провода зависит от его длины, диаметра, массы, формы и некоторых других факторов. Конечно, похожие объекты из материалов с более высокой удельной проводимостью имеют более высокую проводимость (хотя и не всегда).

В Международной системе единиц (СИ) единицей удельной электрической проводимости является сименс на метр (См/м). Входящая в нее единица проводимости названа в честь немецкого ученого, изобретателя, предпринимателя Вернера фон Сименса (1816–1892 гг.). Основанная им в 1847 г. компания Siemens AG (Сименс) является одной из самых больших компаний, выпускающих электротехническое, электронное, энергетическое, транспортное и медицинское оборудование.

Диапазон удельных электрических проводимостей очень широк: от материалов, обладающих высоким удельным сопротивлением, таких как стекло (которое, между прочим, хорошо проводит электрический ток, если его нагреть докрасна) или полиметилметакрилат (органическое стекло) до очень хороших проводников, таких как серебро, медь или золото. Удельная электрическая проводимость определяется количеством зарядов (электронов и ионов), скоростью их движения и количеством энергии, которое они могут переносить. Средними значениями удельной проводимости обладают водные растворы различных веществ, которые используются, например, в гальванических ваннах. Другим примером электролитов со средними значениями удельной проводимости является внутренняя среда организма (кровь, плазма, лимфа и другие жидкости).

Проводимость металлов, полупроводников и диэлектриков подробно обсуждается в следующих статьях Конвертера физических величин TranslatorsCafe.com: Подробнее об электрическом сопротивлении, Подробнее об удельном электрическом сопротивлении и Электрическая проводимость. В этой статье мы обсудим подробнее удельную проводимость электролитов, а также методы и простое оборудование для ее измерения.

Удельная электрическая проводимость электролитов и ее измерение

Удельная проводимость водных растворов, в которых электрический ток возникает в результате движения заряженных ионов, определяется количеством носителей заряда (концентрацией вещества в растворе), скоростью их движения (подвижность ионов зависит от температуры) и зарядом, которые они несут (определяемой валентностью ионов). Поэтому в большинстве водных растворов повышение концентрации приводит к увеличению числа ионов и, следовательно, к увеличению удельной проводимости. Однако после достижения определенного максимума удельная проводимость раствора может начать уменьшаться при дальнейшем увеличении концентрации раствора. Поэтому растворы с двумя различными концентрациями одной и той же соли могут иметь одинаковую удельную проводимость.

Температура также влияет на проводимость, так как при повышении температуры ионы движутся быстрее, что приводит к увеличению удельной проводимости. Чистая вода — плохой проводник электричества. Обычная дистиллированная вода, в которой содержится в равновесном состоянии углекислый газ из воздуха и общая минерализация менее 10 мг/л, имеет удельную электрическую проводимость около 20 мСм/см. Удельная проводимость различных растворов приведена ниже в таблице.

Удельная проводимость различных водных растворов при 25°С
Чистая вода 0,055 мкСм/см
Деионизированная вода 1,0 мкСм/см
Дождевая вода 50 мкСм/см
Питьевая вода 50—500 мкСм/см
Бытовые сточные воды 0,05—1,5 мСм/см
Промышленные сточные воды 0,05—10 мСм/см
Морская вода 50 мСм/см
Хлорид натрия, 1 моль/л 85 мСм/см
Хлористоводородная (соляная) кислота 1 моль/л 332 мСм/см

Для определения удельной проводимости раствора используется измеритель сопротивления (омметр) или проводимости. Это практически одинаковые устройства, отличающиеся только шкалой. Оба измеряют падение напряжения на участке цепи, по которому протекает электрический ток от батареи прибора. Измеренное значение проводимости вручную или автоматически пересчитывается в удельную проводимость. Это осуществляется с учетом физических характеристик измерительного устройства или датчика. Датчики удельной проводимости устроены просто: это пара (или две пары) электродов, погруженных в электролит. Датчики для измерения удельной проводимости характеризуются постоянной датчика удельной проводимости, которая в простейшем случае определяется как отношение расстояния между электродами D к площади (электрода), перпендикулярной течению тока А

Эта формула хорошо работает, если площадь электродов значительно больше расстояния между ними, так как в этом случае большая часть электрического тока протекает между электродами. Пример: для 1 кубического сантиметра жидкости K = D/A = 1 см/1 см² = 1 см⁻¹. Отметим, что датчики удельной проводимости с маленькими электродами, раздвинутыми на относительно большое расстояние, характеризуются значениями постоянной датчика 1.0 cm⁻¹ и выше. В то же время, датчики с относительно большими электродами, расположенными близко друг к другу, имеют постоянную 0,1 cm⁻¹ или менее. Постоянная датчика для измерения удельной электрической проводимости различных устройств находится в пределах от 0,01 до 100 cm⁻¹.

Для получения удельной проводимости из измеренной проводимости используется следующая формула:

σ — удельная проводимость раствора в См/см;

K — постоянная датчика в см⁻¹;

G — проводимость датчика в сименсах.

Постоянную датчика обычно не рассчитывают по его геометрическим размерам, а измеряют в конкретном измерительном устройстве или в конкретной измерительной установке с использованием раствора с известной проводимостью. Эта измеренная величина и вводится в прибор для измерения удельной проводимости, который автоматически рассчитывает удельную проводимость по измеренным значениям проводимости или сопротивления раствора. В связи с тем, что удельная проводимость зависит от температуры раствора, устройства для ее измерения часто содержат датчик температуры, который измеряет температуру и обеспечивает автоматическую температурную компенсацию измерений, то есть, приведение результатов к стандартной температуре 25°C.

Самый простой способ измерения проводимости — приложить напряжение к двум плоским электродам, погруженным в раствор, и измерить протекающий ток. Этот метод называется потенциометрическим. По закону Ома, проводимость G является отношением тока I к напряжению U:

Однако не все так просто, как описано выше — при измерении проводимости имеется много проблем. Если используется постоянный ток, ионы собираются у поверхностей электродов. Также у поверхностей электродов может возникнуть химическая реакция. Это приводит к увеличению поляризационного сопротивления на поверхностях электродов, что, в свою очередь, приводит к получению ошибочных результатов. Если попробовать измерить обычным тестером сопротивление, например, раствора хлористого натрия, будет хорошо видно, как показания на дисплее цифрового прибора довольно быстро изменяются в сторону увеличения сопротивления. Чтобы исключить влияние поляризации, часто используют конструкцию датчика из четырех электродов.

Поляризацию также можно предотвратить или, во всяком случае, уменьшить, если использовать при измерении переменный ток вместо постоянного, да еще и подстраивать частоту в зависимости от проводимости. Низкие частоты используются для измерения низкой удельной проводимости, при которой влияние поляризации невелико. Более высокие частоты используются для измерения высоких проводимостей. Обычно частота подстраивается в процессе измерения автоматически, с учетом полученных значений проводимости раствора. Современные цифровые двухэлектродные измерители проводимости обычно используют переменный ток сложной формы и температурную компенсацию. Они откалиброваны на заводе-изготовителе, однако в процессе эксплуатации часто требуется повторная калибровка, так как постоянная измерительной ячейки (датчика) изменяется со временем. Например, она может измениться при загрязнении датчики или при физико-химических изменениях электродов.

В традиционном двухэлектродном измерителе удельной проводимости (именно такой мы будем использовать в нашем эксперименте) между двумя электродами приложено переменное напряжение и измеряется протекающий между электродами ток. Этот простой метод имеет один недостаток — измеряется не только сопротивление раствора, но и сопротивление, вызванное поляризацией электродов. Для сведения влияния поляризации к минимуму используют четырехэлектродную конструкцию датчика, а также покрытие электродов платиновой чернью.

Общая минерализация

Устройства для измерения удельной электрической проводимости часто используют для определения общей минерализации или содержания твёрдых веществ (англ. total dissolved solids, TDS). Это мера общего количества органических и неорганических веществ, содержащихся в жидкости в различных формах: ионизированной, молекулярной (растворенной), коллоидной и в виде суспензии (нерастворенной). К растворенным веществам относятся любые неорганические соли. Главным образом, это хлориды, бикарбонаты и сульфаты кальция, калия, магния, натрия, а также некоторые органические вещества, растворенные в воде. Чтобы относиться к общей минерализации, вещества должны быть или растворенными, или в форме очень мелких частиц, которые проходят сквозь фильтры с диаметром пор менее 2 микрометров. Вещества, которые постоянно находятся в растворе во взвешенном состоянии, но не могут пройти сквозь такой фильтр, называется взвешенными твердыми веществами (англ. total suspended solids, TSS). Общее количество взвешенных веществ обычно измеряется для определения качества воды.

Существует два метода измерения содержания твердых веществ: гравиметрический анализ, являющийся наиболее точным методом, и измерение удельной проводимости. Первый метод — самый точный, но требует больших затрат времени и наличия лабораторного оборудования, так как воду нужно выпарить до получения сухого остатка. Обычно это производится при температуре 180°C в лабораторных условиях. После полного испарения остаток взвешивается на точных весах.

Второй метод не такой точный, как гравиметрический анализ. Однако он очень удобен, широко распространен и является наиболее быстрым методом, так как представляет собой простое измерение проводимости и температуры, выполняемое за несколько секунд недорогим измерительным прибором. Метод измерения удельной электропроводности можно использовать в связи с тем, что удельная проводимость воды прямо зависит от количества растворенных в ней ионизированных веществ. Данный метод особенно удобен для контроля качества питьевой воды или оценки общего количества ионов в растворе.

Измеренная проводимость зависит от температуры раствора. То есть, чем выше температура, тем выше проводимость, так как ионы в растворе при повышении температуры движутся быстрее. Для получения измерений, независимых от температуры, используется концепция стандартной (опорной) температуры, к которой приводятся результаты измерения. Опорная температура позволяет сравнить результаты, полученные при разных температурах. Таким образом, измеритель удельной проводимости может измерять реальную проводимость, а затем использовать корректирующую функцию, которая автоматически приведет результат к опорной температуре 20 или 25°C. Если необходима очень высокая точность, образец можно поместить в термостат, затем откалибровать измерительный прибор при той же температуре, которая будет использоваться при измерениях.

Большинство современных измерителей удельной проводимости снабжены встроенным датчиком температуры, который используется как для температурной коррекции, так и для измерения температуры. Самые совершенные приборы способны измерять и отображать измеренные значения в единицах удельной проводимости, удельного сопротивления, солености, общей минерализации и концентрации. Однако еще раз отметим, что все эти приборы измеряют только проводимость (сопротивление) и температуру. Все физические величины, которые показывает дисплей, рассчитываются прибором с учетом измеренной температуры, которая используется для автоматической температурной компенсации и приведения измеренных значений к стандартной температуре.

Эксперимент: измерение общей минерализации и проводимости

В заключение мы выполним несколько экспериментов по измерению удельной проводимости с помощью недорогого измерителя общей минерализации (называемого также солемером, салинометром или кондуктомером) TDS-3. Цена «безымянного» прибора TDS-3 на eBay с учетом доставки на момент написания статьи менее US$3.00. Точно такой же прибор, но с названием изготовителя стоит уже в 10 раз дороже. Но это для любителей платить за брэнд, хотя очень высока вероятность того, что оба прибора будут выпущены на одном и том же заводе. TDS-3 осуществляет температурную компенсацию и для этого снабжен датчиком температуры, расположенным рядом с электродами. Поэтому его можно использовать и в качестве термометра. Следует еще раз отметить, что прибор реально измеряет не саму минерализацию, а сопротивление между двумя проволочными электродами и температуру раствора. Все остальное он автоматически рассчитывает с использованием калибровочных коэффициентов.

Измеритель общей минерализации поможет определить содержание твердых веществ, например, при контроле качества питьевой воды или определения солености воды в аквариуме или в пресноводном пруде. Его можно также использовать для контроля качества воды в системах фильтрации и очистки воды, чтобы узнать когда пришло время заменить фильтр или мембрану. Прибор откалиброван на заводе-изготовителе с помощью раствора хлорида натрия NaCl с концентрацией 342 ppm (частей на миллион или мг/л). Диапазон измерения прибора — 0–9990 ppm или мг/л. PPM — миллионная доля, безразмерная единица измерения относительных величин, равная 1 • 10⁻⁶ от базового показателя. Например, массовая концентрация 5 мг/кг = 5 мг в 1 000 000 мг = 5 частей на миллион или миллионных долей. Точно так же, как процент является одной сотой долей, миллионная доля является одной миллионной долей. Проценты и миллионные доли по смыслу очень похожи. Миллионные доли, в отличие от процентов, удобны для указания концентрации очень слабых растворов.

Прибор измеряет электрическую проводимость между двумя электродами (то есть величину, обратную сопротивлению), затем пересчитывает результат в удельную электрическую проводимость (в англоязычной литературе часто используют сокращение EC) по приведенной выше формуле проводимости с учетом постоянной датчика K, затем выполняет еще один пересчет, умножая полученную удельную проводимость на коэффициент пересчета 500. В результате получается значение общей минерализации в миллионных долях (ppm). Подробнее об этом — ниже.

Данный прибор для измерения общей минерализации нельзя использовать для проверки качества воды с высоким содержанием солей. Примерами веществ с высоким содержанием солей являются некоторые пищевые продукты (обычный суп с нормальным содержанием соли 10 г/л) и морская вода. Максимальная концентрация хлорида натрия, которую может измерить этот прибор — 9990 ppm или около 10 г/л. Это обычная концентрация соли в пищевых продуктах. Данным прибором также нельзя измерить соленость морской воды, так как она обычно равна 35 г/л или 35000 ppm, что намного выше, чем прибор способен измерить. При попытке измерить такую высокую концентрацию прибор выведет сообщение об ошибке Err.

Солемер TDS-3 измеряет удельную проводимость и для калибровки и пересчета в концентрацию использует так называемую «шкалу 500» (или «шкалу NaCl»). Это означает, что для получения концентрации в миллионных долях значение удельной проводимости в мСм/см умножается на 500. То есть, например, 1,0 мСм/см умножается на 500 и получается 500 ppm. В разных отраслях промышленности используют разные шкалы. Например, в гидропонике используют три шкалы: 500, 640 и 700. Разница между ними только в использовании. Шкала 700 основана на измерении концентрации хлорида калия в растворе и пересчет удельной проводимости в концентрацию выполняется так:

1,0 мСм/см x 700 дает 700 ppm

Шкала 640 использует коэффициент преобразования 640 для преобразования мСм в ppm:

1,0 мСм/см x 640 дает 640 ppm

В нашем эксперименте мы вначале измерим общую минерализацию дистиллированной воды. Солемер показывает 0 ppm. Мультиметр показывает сопротивление 1,21 МОм.

Для эксперимента приготовим раствор хлорида натрия NaCl с концентрацией 1000 ppm и измерим концентрацию с помощью TDS-3. Для приготовления 100 мл раствора нам нужно растворить 100 мг хлорида натрия и долить дистиллированной воды до 100 мл. Взвесим 100 мг хлорида натрия и поместим его в мерный цилиндр, добавим немного дистиллированной воды и размешаем до полного растворения соли. Затем дольем воду до метки 100 мл и еще раз как следует размешаем.

Как видно на рисунке, TDS-3 измерил концентрацию 955 ppm. Проводимость такого раствора должна быть 1000 ppm / 500 = 2 мСм/см (шкала NaCl или шкала 500).

Для экспериментального определения проводимости мы использовали два электрода, изготовленные из того же материала и с теми же размерами, что и электроды TDS-3. Измеренное сопротивление составило 2,5 КОм.

Теперь, когда нам известно сопротивление и концентрация хлорида натрия в миллионных долях, мы можем приблизительно рассчитать постоянную измерительной ячейки солемера TDS-3 по приведенной выше формуле:

K = σ/G = 2 мСм/см x 2,5 кОм = 5 см⁻¹

Это значение 5 см⁻¹ близко к расчетной величине постоянной измерительной ячейки TDS-3 с указанными ниже размерами электродов (см. рисунок).

  • D = 0,5 см — расстояние между электродами;
  • W = 0,14 см — ширина электродов
  • L = 1,1 см — длина электродов

Постоянная датчика TDS-3 равна K = D/A = 0,5/0,14×1,1 = 3,25 cm⁻¹. Это не сильно отличается от полученного выше значения. Напомним, что приведенная выше формула позволяет лишь приблизительно оценить постоянную датчика.

Читайте также:  Реле поворотов и аварийной сигнализации ваз 2106