После исчерпывания природных запасов нефти, людям придется полностью положиться на альтернативные виды получения энергии. Водородный двигатель, как замена ДВС, работающих на черном золоте, является одной из перспектив будущих десятилетий.

Силовые установки такого типа имеют больший КПД и меньшую степень токсичности выхлопных газов. Впрочем, главное преимущество моторов, работающих на водороде, – неограниченный запас сырья для производства топлива. Вода, именно она может стать основой топлива будущего.

Интерес к использованию водорода появился еще во время топливного кризиса 70-х годов, но первый водородный двигатель был изобретен только в начале XIX столетия. Действительное применение технология получила во время блокады Ленинграда, когда водородом заправляли лебедки аэростатов, транспорт.

Несмотря на очевидные преимущества, знания способов получения водорода и его использования для работы двигателя внутреннего сгорания, существует несколько значительных «но», замедляющих внедрение этой прогрессивной технологии.

Особенности водорода, как топлива для ДВС

  • после сгорания остается только водяной пар;
  • реакция происходит намного быстрей, чем в случаи с бензином либо дизелем;
  • детонационная устойчивость позволяет повысить степень сжатия;
  • благодаря своей летучести, водород способен проникать в самые малые полости, зазоры между деталями (лишь особые сплавы повышенной прочности способны переносить разрушительное воздействия водорода на структуру металла);
  • теплоотдача сгорания водорода в 2,5 раза больше, чем у бензиновой смеси;
  • широкий диапазон реакции. Минимальная пропорция водорода, достаточная для реакции с кислородом, составляет всего 4%. Такая особенность позволяет настраивать режимы работы двигателя, дозируя консистенцию смеси;
  • хранение водорода осуществляется в сжатом или жидком агрегатном состоянии. При пробое бака, газ под давлением испаряется.

Ввиду перечисленных выше особенностей, использования водорода, как чистого топлива для ДВС, невозможно без внедрения изменений конструкции силового агрегата, а также навесного оборудования.

Устройство и принцип работы

Главное отличие двигателей на водороде от привычных нам сейчас бензиновых либо дизельных аналогов заключается в способе подачи и воспламенении рабочей смеси. Принцип преобразования возвратно-поступательных движений КШМ в полезную работу остается неизменным. Ввиду того что горение топлива на основе нефтепродуктов происходит медленно, камера сгорания наполняется топливно-воздушной смесью немного раньше момента поднятия поршня в свое крайнее верхнее положение (ВМТ). Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе не обязано быть высоким (4 атм. достаточно).

В идеальных условиях водородный двигатель может иметь систему питания закрытого типа. Процесс смесеобразования происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, который проходя через радиатор, конденсируется и превращается обратно в Н2О. Такой тип аппаратуры возможен в том случаи, если на автомобиле установлен электролизер, который отделит с полученной воды водород для повторной реакции с кислородом.

На практике такой тип системы осуществить пока что сложно. Для исправной работы и уменьшения силы трения в моторах используется масло, испарения которого являются частью отработанных газов. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.

Гибридные модели и возможные модификации

Благодаря большому интересу к использованию водорода в качестве топлива для ДВС, гидродвигатели внутреннего сгорания имеют различные модификации и типы исполнения.

Схема устройства гибридного водородного двигателя

Мотор, разработанный В.С. Кащеевым, имеет иное устройство. Помимо впускного клапана (6) для подачи воздуха, выпускного для вывода выхлопных газов (7), ГБЦ имеет отдельный клапан для подачи водорода (9) и свечу зажигания (10), которые находятся в предкамере (8). Последняя расположена в ГБЦ выше уровня поршня в положении НМТ.

После преодоления поршнем НМТ в камеру сгорания подается и воспламеняется водород (предварительно поршень затягивает воздух через впускные клапаны). В это же самое время открываются выпускные клапаны. Из-за разницы атмосферного давления, отработанные газы устремляются в выпускной коллектор, создавая за собой вакуум, который перемещает поршень к ВМТ и за счет импульса обратно в крайнее нижнее положение. Как видим, принцип немного отличается, но суть остается неизменной.

Технология гибридных силовых установок – это промежуточная ступень между началом использования водорода в качестве топлива и полным отказом от использования нефтепродуктов. Автомобили с моторами такого типа могут передвигаться как на бензине, так и на водороде.

Еще более широкого распространения получило применение водорода в качестве компонента топливно-воздушной смеси. Для работы ДВС используется обычное топливо и небольшая часть гремучего газа. Это позволяет повысить степень сжатия, и уменьшить токсичность выхлопных газов.

Одним из возможных путей развития двигателей на водороде является применение силовых установок с топливными элементами. Во время химической реакции водорода и кислорода выделяется энергия, которая используется для питания электродвигателей автомобиля.

Трудности эксплуатации водородных ДВС

Главное препятствие на пути внедрения технологии – это стоимость получения водорода (Н2), а также комплектующих для его хранения и транспортировки. К примеру, для сохранения сжиженного состояния нужно поддерживать стабильную температуру -253º С. Наиболее доступный способ получения Н2 – это электролиз воды. Промышленное снабжение водородом требует больших энергетических затрат. Рентабельным этот процесс сможет сделать ядерная энергетика, которой также пытаются найти рациональную альтернативу. Транспортировка и хранение газа требуют использования дорогостоящих материалов и высококачественных механизмов. К другим недостаткам водородного топлива можно отнести:

  • взрывоопасность. В замкнутом пространстве достаточная для реакции концентрация гремучего газа может спровоцировать взрыв. Усугубить ситуацию способна высокая температура воздуха. Из-за высокой степени диффузности водорода существует риск попадания Н2 в выхлопной коллектор, где реакция с горячими выхлопными газами приведет к возгоранию смеси. Роторный двигатель, ввиду особенностей компоновки, является более предпочтительным для водородного автомобиля;
  • для хранения водорода требуется емкость большого объема, а также специальные системы, препятствующие улетучиванию Н2 и обеспечивающие защиту от механических деформаций. Если для автобусов, грузовиков либо водного транспорта такая особенность не играет большой роли, то легковые автомобили теряют ценные кубометры багажного отделения;
  • в режимах высокотемпературных нагрузок водород способен провоцировать разрушительное воздействие на детали цилиндропоршневой группы и моторное масло. Применение соответствующих сплавов и смазочных материалов ведет к удорожанию производства и эксплуатации двигателей, работающих на водороде.

Перспективы развития

Автомобилестроение – далеко не единственная область, где могут применяться водородные двигатели. Водный, железнодорожный транспорт, авиация, а также различная вспомогательная спецтехника могут использовать силовые установки подобного типа.

Интерес к внедрению технологии водородных двигателей проявляют как дочерние предприятия, так и крупные автоконцерны (BMW, Volskwagen, Toyota, GM, Daimler AG и прочие). Уже сейчас на дорогах можно встретить не только опытные образцы, но и полноценные представители модельного ряда, приводимые в движение с помощью водорода. BMW 750i Hydrogen, Honda FSX, Toyota Mirai и многие другие модели отлично зарекомендовали себя во время дорожных испытаний. К сожалению, высокая стоимость водорода, отсутствие инфраструктуры заправочных станций, а также достаточного количества квалифицированных сотрудников, оборудования для ремонта и обслуживания не позволяют запустить такие автомобили в массовое производство. Оптимизация всего цикла использования гремучего газа являются первоначальной задачей области развития водородной энергетики.

Первым разработчиком, представившим водородный двигатель для автомобиля широкой публике, был концерн «Тойота». Ещё в 1997 году ими был презентован внедорожник FCHV, который тогда так и не запустили в серийное производство.

Хорошей альтернативой бензину может стать водородный двигатель

Сегодня ведут исследования и другие компании, среди них:

  • Honda Motor,
  • Volkswagen,
  • General Motors,
  • Daimler AG,
  • Ford Motor,
  • BMW и так далее.

Как работает водородный двигатель?

Машины на водородном двигателе можно разделить на три группы:

  • авто с двумя энергоносителями, обладающее высокоэкономичным двигателем, который может работать как на чистом водороде, так и на смеси его с бензином. КПД такого двигателя 90–95%, тогда как дизельного — 50%, а бензинового — 35%. Такие автомобили соответствуют стандарту «Евро-4»;
  • водородный автомобиль со встроенным электродвигателем, который питает основной топливный элемент, установленный на борту. Сейчас созданы авто с КПД выше 75%;
  • обычные автомобили, работающие на смеси или чистом водороде. Выхлоп намного чище, а КПД «подрастёт» примерно на 20%.

Как работает водородный двигатель? Выделяют 2 типа силовых установок по принципу работы:

  • водородные двигатели внутреннего сгорания. Используется роторный двигатель;
  • силовые установки на топливных водородных элементах — их принцип работы построен на химической реакции. Корпус элемента имеет мембрану, проводящую только протоны и разделяющую камеры с электродами — анодом и катодом. В камеру анода подводят водород, в камеру катода подводят кислород. Электроды покрывают слоем катализатора, например, это платина. Молекулярный водород теряет электроны под воздействием катализатора. Протоны через мембрану проводятся к катоду, под воздействием катализатора в результате соединения с электронами образуется вода. Из камеры анода электроны уходят в электрическую цепь, которая подсоединена к двигателю. Так образуется ток для питания мотора.

Достоинства водородного двигателя:

  • продукт горения водорода — вода. А значит, это самое экологически чистое топливо;
  • мощность, приёмистость и иные показатели двигателя выше, чем у стандартного — электроэнергия обеспечивает их сполна;
  • низкий уровень шума;
  • простота обслуживания — не нужна сложная трансмиссия, а трущихся деталей меньше;
  • низкая себестоимость эксплуатации транспорта;
  • меньший расход топлива и большая скорость заправки;
  • более высокий запас хода;
  • водород имеет большой потенциал в качестве альтернативного вида топлива, так как он может быть получен из различных источников, в том числе солнечной энергии или ветра;
  • основное сырьё — вода — бесплатное.

Недостатки водородного двигателя:

  • Использование топливных элементов в обычном двигателе чревато пожаром или взрывом из-за его устройства.
  • Стоимость их также весьма высока.
  • Вес автомобиля увеличивается в результате использования преобразователей тока и мощных аккумуляторов.
  • Процесс получения из воды водорода пока тоже недёшев, как и транспортировка нового топлива.
  • Прогнозируются и экологические проблемы — увеличение в атмосфере количества водорода может пагубно сказаться на озоновом слое Земли.
  • Производство аккумуляторов – также вредный для окружающей среды процесс.
  • Одной из проблем транспортных средств на водороде является высокая стоимость платины, необходимой для химической реакции в двигателе.
  • Отсутствие водородных заправочных станций делает водородные автомобили неконкурентоспособными по сравнению с обычными автомобилями.
  • Не решён вопрос о хранении. На сегодняшний день предлагается хранить в сжиженном виде либо под высоким давлением, но исследования продолжаются.

Водородные топливные элементы

В разные годы водородные топливные элементы использовались:

  • для тракторов,
  • локомотивов,
  • подводных лодок,
  • вертолётов,
  • в автомобиле для гольфа,
  • на мотоцикле.

Для автомобилей с водородным двигателем и автобусов используются элементы на протонно-обменной мембране (PEM), они компактны и мало весят.

Авто на водороде

  • Тойота, приручившая водород, — Fuel Cell Sedan — это комфорт и вместительность стандартной модели. Для того чтобы увеличить пространство в салоне и багажнике, сжатые резервуары водорода расположены в полу автомобиля. Предназначена машина для пяти пассажиров, цена составит 67500 $.
  • Технологии космоса в обычной жизни. BMW Hydrogen 7 уже доказал свои возможности на практике, порядка ста автомобилей BMW Hydrogen 7 были тестированы выдающимися деятелями культуры, политики, бизнеса и средств массовой информации. Опыт испытания в реальных условиях показал, что переход на водород полностью совместим с комфортом, динамикой и безопасностью, которые вы могли бы ожидать от BMW. Авто можно переключать с одного вида топлива на другой. Максимальная скорость 229 км/ч.
  • Генератор энергии Honda FCX Clarity. По словам разработчиков, можно подключить к трансформатору и снабжать электричеством все бытовые приборы. Баки с водородом находятся под задними сидениями, а после полной заправки топлива ей хватит на 500 км. Цена от 62807 $.
  • Часть автобусов MAN работает на водороде.

Водородные двигатели будущего

  • Новое сотрудничество в автомобильном секторе начали General Motors (GM) и Honda Motor. Обе компании планируют совместно разрабатывать водородные топливные элементы в течение следующих семи лет. Обмен ноу-хау поможет снизить затраты на технологии и делает основной целью реагирование на увеличение объёма глобальных требований, предъявляемых к сокращению выбросов, стандарт «Евро-4» имеет строгие рамки.
  • Силовая установка автомобиля может послужить и электростанцией для дома, обеспечивая его энергией в течение 5 дней.
  • Каждый производитель в ближайшее время рассчитывает продавать минимум тысячу экокаров за год, ожидаемая цена 97000 $.
  • К 2050 году водород как источник топлива покроет треть производимой энергии.

А вот Илон Маск (глава SpaceX и Tesla) к новому топливу относится крайне критично, считая его создание маркетинговым ходом. Маск заявил, что использование технологий не решит реальных транспортных проблем и что в литий-ионных батареях плотность хранения энергии превышает все водородные разработки. А как думаете вы?

Изобретение относится к двигателестроению и может быть использовано в транспортных средствах. Устройство для присадки водорода в топливо двигателя внутреннего сгорания содержит смесительную камеру с каналами подачи топлива и водорода в смесительную камеру, каналом подачи смеси топлива и водорода в цилиндр двигателя из смесительной камеры. Смесительная камера содержит патрубки, соединяющие камеру с каналами подачи топлива в камеру, подачи водорода и каналом подачи смеси в цилиндр двигателя. Конец патрубка, соединяющего камеру с каналом подачи топлива, направленный в камеру, выполнен сужающимся, а конец патрубка, соединяющего камеру с каналом подачи водорода, направленный в камеру, и конец патрубка, соединяющего камеру с каналом подачи смеси топлива и водорода в цилиндр двигателя, направленный из камеры, выполнены расширяющимися. При прохождении топлива через сужающий патрубок увеличивается скорость топлива, при этом кинетическая энергия возрастает. Повышение кинетической энергии топлива обусловливает понижение давления в смесительной камере, под влиянием разности давлений водород поступает через накопительную камеру в смесительную камеру, где происходит подмешивание топлива с водородом, его насыщение. Полученная смесь через канал смеси, топливоподкачивающий насос, насос высокого давления и форсунку подается в цилиндр двигателя. Насыщенное водородом топливо обеспечивает полное сгорание. Устройство добавки водорода в топливо до 10% является эффективным средством увеличения энергоэкологических показателей двигателя внутреннего сгорания. Технический результат заключается в возможности подачи водорода в топливо под небольшим давлением. 1 з.п.ф-лы, 2 ил.

Изобретение относится к двигателестроению и может быть использовано в транспортных средствах.

Известны устройства подачи присадок в топливо двигателя, например, устройство для подачи водотопливной эмульсии в двигатель внутреннего сгорания (см. авторское свидетельство СССР N 1399491, МПК F 02 М 25/022, опубл. 1988). Устройство позволяет повысить экономичность двигателя путем регулирования соотношения топлива и воды в зависимости от нагрузки. Однако в виду сложности практического применения эти устройства не получили.

Известно устройство, в котором используют водород как присадку к жидкому топливу (см. Д.Д. Матиевский и др. Двигателестроение, N 2, 1985, стр. 53 — 56). Такие присадки позволяют улучшить условия смесеобразования и сгорания дизельного топлива, и благодаря этому можно достичь экономии углеводородного топлива и снизить дымность и токсичность отработанных газов.

Основным элементом системы, где осуществляется насыщение жидкого топлива с водородом является устройство, содержащее смесительную камеру с каналами подачи топлива и водорода в смесительную камеру и каналом подачи смеси топлива и водорода в цилиндр двигателя.

Наиболее близким техническим решением к заявленному изобретению является устройство для присадки водорода в топливо двигателя внутреннего сгорания, содержащее смесительную камеру с каналами подачи топлива и водорода в смесительную камеру, каналом подачи смеси топлива и водорода в цилиндр двигателя из смесительной камеры, причем смесительная камера содержит патрубки, соединяющие камеру с каналами подачи топлива в камеру, подачи водорода и каналом подачи смеси в цилиндр двигателя (см. авторское свидетельство СССР N 1002644, МПК F 02 М 25/10, опубл. 1983).

Недостатком данного устройства является недостаточно эффективная работа устройства.

Заявляемое изобретение решает задачу создания устройства для присадки водорода в топливо двигателя внутреннего сгорания, которое позволяет подавать водород в топливо двигателя, например, от электролизера под небольшим давлением.

Техническим результатом, достигаемым при этом, является возможность подачи водорода в топливо под небольшим давлением. В зависимости от нагрузки дизеля, необходимое количество водорода может быть получено непосредственно разложением воды во время работы двигателя. Этот технический результат достигается тем, что устройство для присадки водорода в топливо двигателя внутреннего сгорания содержит смесительную камеру с каналами подачи топлива и водорода в смесительную камеру, каналом подачи смеси топлива и водорода в цилиндр двигателя из смесительной камеры, причем смесительная камера содержит патрубки, соединяющие камеру с каналами подачи топлива в камеру, подачи водорода и каналом подачи смеси в цилиндр двигателя, при этом конец патрубка, соединяющего камеру с каналом подачи топлива, направленный в камеру, выполнен сужающимся, а конец патрубка, соединяющего камеру с каналом подачи водорода, направленный в камеру, и конец патрубка, соединяющего камеру с каналом подачи смеси топлива и водорода в цилиндр двигателя, направленный из камеры, выполнены расширяющимися.

Устройство может дополнительно содержать накопительную водородную камеру, соединенную с устройством для получения необходимого количества водорода, связанным с датчиком нагрузки двигателя.

На фиг. 1 показана схема устройства для присадки водорода к топливу двигателя внутреннего сгорания; на фиг. 2 — смесительная камера с патрубками.

Устройство содержит накопительную камеру 1, канал для подачи водорода 2, канал для подачи топлива 3, канал для подачи смеси топлива с водородом 4, смесительную камеру 5, патрубки 6, 7, 8, невозвратный клапан 9, топливоподкачивающий насос 10, насос высокого давления 11, форсунку 12, двигатель 13, электролизер 14, датчик нагрузки 15, блок питания 16 и блок управления 17. Патрубок 6 имеет сужение, т.е. выполняется с определенной конусностью, конец уменьшенного диаметра присоединяется к смесительной камере, а конец большого диаметра — к каналу топлива. Аналогично с конусностью выполняются патрубки 7 и 8, соответственно уменьшенный диаметр патрубка 7 присоединяется к смесительной камере 5, а конец большого диаметра — к каналу топливной смеси 4, уменьшенный диаметр 8 присоединяется к каналу водорода 5, а конец большого диаметра — к смесительной камере 5. Так как сечение патрубка 6 по длине уменьшается, поэтому при прохождении топлива по патрубку 6 постепенно увеличивается его скорость. Кинетическая энергия при этом возрастает, достигая наивысшего значения на выходе топлива из патрубка 6 в камеру 5. Повышение кинетической энергии топлива обусловливает понижение давления в камере 5, под влиянием разности давлений в камере 5 водород поступает от накопительной камеры 1 через невозвратный клапан 9 в смесительную камеру 5, где он захватывается струей топлива, вытекающей с большой скоростью из патрубка 6 и происходит подмешивание и насыщение топлива водородом.

Смесь топлива и водорода поступает в расширяющийся патрубок 7 и далее по каналу 4, через насосы 7, 8, форсунку 12 поступает в цилиндр двигателя 13.

При нерабочем двигателе в накопительной камере 1 имеется небольшое количество водорода, выработанное электролизером 1 перед остановкой двигателя. Этот водород не представляет никакой опасности для его хранения и служит для запуска.

Электролизер 14, где происходит получение водорода прямым разложением воды или другими способами, подключен к блоку управления 17, который связан с датчиком нагрузки 15 и блоком питания 16. В зависимости от нагрузки, например, величины эффективной мощности Ре, блок управления 17 подает необходимую энергию на электролизер, в котором получают нужное количество водорода, например до 10% от массы потребляемого топлива. При неработающем двигателе предотвращение перетекания жидкого топлива в накопительную камеру водорода 1 осуществляется невозвратным клапаном 9.

Устройство для присадки водорода в топливо двигателя внутреннего сгорания работает следующим образом.

После запуска двигателя топливная система начинает работать, одновременно начинает работать электролизер 14, который в зависимости от нагрузки начинает вырабатывать водород по заданной программе, соответственно полученный водород по каналу 5 поступает в накопительную камеру 1, оттуда через невозвратный клапан засасывается в смесительную камеру 5, где происходит подмешивание и насыщение водорода в топливе. Подмешиваемый водород вспенивает топливо и полученная смесь по каналу 4 поступает в топливоподкачивающий насос 10, затем в топливный насос высокого давления 11 и форсункой 12 насыщенное топливо впрыскивается в цилиндр двигателя и происходит полное его сгорание.

При увеличении нагрузки двигателя электролизер увеличивает выработку водорода и соответственно происходит увеличение добавки водорода по заданной программе, например, до 10%.

При уменьшении нагрузки двигателя добавление водорода в топливо происходит в обратном порядке.

Таким образом, присадка водорода к топливу двигателя внутреннего сгорания в небольших количествах — до 0,1% от массы топлива может быть использована как эффективное средство повышения экономических и экологических показателей на всех дизельных транспортных средствах.

1. Устройство для присадки водорода в топливо двигателя внутреннего сгорания, содержащее смесительную камеру с каналами подачи топлива и водорода в смесительную камеру, каналом подачи смеси топлива и водорода в цилиндр двигателя из смесительной камеры, причем смесительная камера содержит патрубки, соединяющие камеру с каналами подачи топлива в камеру, подачи водорода и каналом подачи смеси в цилиндр двигателя, отличающееся тем, что конец патрубка, соединяющего камеру с каналом подачи топлива, направленный в камеру, выполнен сужающимся, а конец патрубка, соединяющего камеру с каналом подачи водорода, направленный в камеру, и конец патрубка, соединяющего камеру с каналом подачи смеси топлива и водорода в цилиндр двигателя, направленный из камеры, выполнены расширяющимися.

2. Устройство по п.1, отличающееся тем, что оно дополнительно содержит накопительную водородную камеру, соединенную с устройством для получения необходимого количества водорода, связанным с датчиком нагрузки двигателя.